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ABSTRACT

Acoustic echo cancellation (AEC) is a technique used in full-
duplex communication systems to eliminate acoustic feedback of
far-end speech. However, their performance degrades in naturalistic
environments due to nonlinear distortions introduced by the speaker,
as well as background noise, reverberation, and double-talk scenar-
ios. To address nonlinear distortions and co-existing background
noise, several deep neural network (DNN)-based joint AEC and de-
noising systems were developed. These systems are based on ei-
ther purely “black-box” neural networks or “hybrid” systems that
combine traditional AEC algorithms with neural networks. We pro-
pose an all-deep-learning framework that combines multi-channel
AEC and our recently proposed self-attentive recurrent neural net-
work (RNN) beamformer. We propose an all-deep-learning frame-
work that combines multi-channel AEC and our recently proposed
self-attentive recurrent neural network (RNN) beamformer. Further-
more, we propose a double-talk detection transformer (DTDT) mod-
ule based on the multi-head attention transformer structure that com-
putes attention over time by leveraging frame-wise double-talk pre-
dictions. Experiments show that our proposed method outperforms
other approaches in terms of improving speech quality and speech
recognition rate of an ASR system.

Index Terms— acoustic echo cancellation, speech enhance-
ment, deep learning, neural beamforming

1. INTRODUCTION

With an increasing demand for hands-free communication between
speakers in two distant locations (far-end and near-end), effective
communication necessitates high-quality audio transmission [1, 2].
Far-end speakers, on the other hand, tend to receive modified ver-
sions of their speech as feedback (far-end echo) due to acoustic cou-
pling between the loudspeaker and the microphone locations at the
near-end speaker, resulting in reduced speech intelligibility [3, 4].
To improve overall communication quality, an AEC system aims to
remove far-end speech captured by the microphone at the near-end
while preserving speech from the near-end speaker before transmis-
sion. Many AEC systems based on digital signal processing (DSP)
have used linear and nonlinear adaptive filters to address this issue
for more than two decades [5, 6, 7, 8, 9, 10]. Nonetheless, in practi-
cal scenarios involving nonlinear distortions caused by loudspeakers,
the presence of reverberation and background noise at the near-end,
and double-talk conditions, their performance in suppressing only
far-end speech was insufficient.

Recent advances in deep learning have shown the potential to
improve the performance of many speech processing systems. As
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a result, hybrid systems combining traditional adaptive filters and
DNNs [11, 12, 13] have been proposed to address nonlinear distor-
tions from loudspeakers by suppressing residual far-end speech from
the adaptive filter output. For example, Speex and WebRTC [14, 15]
have been combined with RNNs in [16]. Furthermore, multi-task
networks were used to design AEC systems with the secondary task
of detecting double-talk scenarios in order to avoid suppressing near-
end speech in double-talk scenarios [17, 18, 19]. Later, advanced
networks such as complex-valued DNNs [20, 21], Long Short Term
Memory networks (LSTM), and multi-head self-attention [17, 22]
were used to develop AEC systems to also compensate for the time
lag between far-end speech and microphone captured signal along-
side handling nonlinear distortions and double-talk. Early attempts
at AEC for multi-channel speech systems included using single-
channel AEC on individual microphones, followed by traditional
beamforming techniques [23, 24]. Later, end-to-end DNN-based
approaches were proposed for multi-microphone AEC systems [25].

In this work, we propose a two-stage joint AEC and beam-
former with explicit deep learning based AEC and beamforming
modules, as opposed to a “black-box” approach. The three con-
tributions listed below contribute to the proposed system’s overall
performance: (i) we propose using a joint spatial covariance matrix
computed using microphone signals and far-end speech as input fea-
tures, which accounts for cross-correlation between far-end speech
and multiple microphones, essential for designing an efficient multi-
channel AEC system, (ii) we extend our recently proposed gen-
eralized spatio-temporal RNN beamformer (GRNNBF) [26] to a
joint spatio-temporal RNN AEC beamformer (JRNN-AEC-BF) for
handling AEC and beamforming simultaneously using original and
AEC processed signals. We see that by doing so, JRNN-AEC-BF
can learn a better beamforming solution from target speech and noise
covariance matrices that accumulate the correlations between orig-
inal and AEC processed signals, and (iii) we propose a double-talk
detection transformer (DTDT) module based on the multi-head at-
tention transformer structure [27], that computes attention over time
while leveraging double-talk detection to suppress far-end residuals.

The remainder of the paper is organized as follows: The signal
model for the joint AEC and beamformer task is introduced in Sec-
tion 2, and the proposed system is described in Section 3. Section 4
describes the dataset and experimental setup. In Section 5, we report
on the improvements achieved across various metrics. Finally, we
conclude in Section 6.

2. SIGNAL MODEL
We consider the problem of enhancing near-end speech picked up by
M -microphones in presence of reverberation, far-end echoes from
the loudspeaker, and background noise. Let x(t) and s(t) repre-
sent the clean speech from far-end and near end speakers respec-
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Fig. 1: Overview of all deep learning based joint echo cancellation and beamformer trained using time-domain scale-invariant SNR.

tively. The signals captured by an M -channel microphone array,
d(t) (termed as “mixture") at time ‘t’ can be represented as,

d(t) = sr(t) + x̃r(t) + v(t) ∈ RM×1 (1)

where, sr(t) = hs(t) ∗ s(t) and x̃r(t) = hx(t) ∗ fNL(x(t))

are the received reverberant copies of near-end and loudspeaker
emitted nonlinearly distorted far-end speech components, fNL is a
function that mimics the loudspeaker’s nonlinearities, hs(t) and
hx(t) areM -channel room impulse responses (RIRs) from near-end
speaker and the loudspeaker locations to the microphone array, ‘∗’
denotes the convolution, and v(t) represents the background noise.

ŝr(t) = Ψ(y(t)) = Ψ([d(t), x(t)]T ) (2)

This study aims at designing a joint AEC and beamforming net-
work (Ψ) as a supervised speech enhancement system to suppress
the far-end echo and background noise while preserving the embed-
ded near-end speech using mixture and clean far-end signals. How-
ever, as stated in Eq.(2), the proposed network is limited to estimat-
ing reverberant near-end speech, ŝr(t) and does not include derever-
beration to estimate anechoic near-end speech, ŝ(t).

3. PROPOSED SYSTEM OVERVIEW
This section describes proposed joint AEC and beamformer. As
illustrated in Fig.1, the proposed system comprises of two stages:
(i) a deep learning-based multi-channel AEC, and (ii) joint spatio-
temporal RNN AEC beamformer (JRNN-AEC-BF) with double-talk
detection transformer (DTDT) module trained using joint spatial co-
variance matrix as input features.

3.1. Joint Spatial Covariance Matrix
The proposed network is provided with stacked M -channel mixture
and single-channel far-end signals, denoted as y(t)∈R(M+1)×T

where ‘T ’ represents the number of samples. The audio samples
are first transformed to frequency domain, Y(n, f) using one-
dimensional convolution layers that employ a short-time fourier
transform (STFT) operation. Here, ‘n’∈[0, N), and ‘f ’∈[0, F )
represents frame index and frequency bin. In general, multi-
channel speech systems are trained using either stacked com-
plex spectrum [25, 28] or log-power spectra (LPS) and interau-
ral phase difference (IPD) features derived from mixture signals
[26, 29]. Rather, we propose using the joint spatial covariance ma-
trix Φy(n, f)∈C(M+1)×(M+1) as input features. This accounts for
cross-correlation between the far-end speech and the microphone(s),
as well as inter-microphone phase delays, which are crucial in
designing an efficient multi-channel AEC system.

Y(n, f) = [D(n, f), X(n, f)]T ; µ̄y =

M+1∑
i=1

Yi(n, f) (3)

Φy(n, f) =
(
Y(n, f)− µ̄y

)(
Y(n, f)− µ̄y

)H (4)

We compute the joint spatial covariance matrix as shown in Eq.(3)
& (4), where ‘i’ represents the channel number, ‘µ̄y’ represents the
mean across all channels, and (·)H represents Hermitian operation.

We discard the upper half of the complex symmetrical matrix to re-
duce computational cost and memory usage. Since the spatial fea-
tures include information about reverberation time, ambient noise,
speakers, time delay(s), and far-end signal attenuation, we employ
multi-head self-attention over time to dynamically emphasize rele-
vant features which maximize the system’s learning ability.

3.2. Joint AEC and Beamformer
3.2.1. Stage-I: Multi-Channel AEC
The first stage, multi-channel AEC is a deep convolutional recurrent
neural network (DCRNN) [30] with two encoders, two decoders, and
a frequency-time gated recurrent units (FT-GRU) with residual con-
nections. Similar to [31, 28], FT-GRU comprises of two recurrent
units with fully connected (FC) networks. The first GRU network
scans all frequency bins to summarize spectral information from en-
coded features, Uin. Later, the output layer activations are reshaped
and fed to the second GRU network which examines correlations
over time producing Uout, see Eq.(5). Here, (·)Tr represents trans-
pose operation performed on time-frequency dimensions.

FT-GRU

{
Zout =

(
Uin + FC

(
GRU

(
Uin[:, f, n]

)))Tr

Uout =
(
Zout + FC

(
GRU

(
Zout[:, n, f ]

)))Tr
(5)

The decoder of the proposed multi-channel AEC system estimates
((2K+1)×(2L+1)) dimensional complex-valued ratio filters [32,
29] cRFmix(n, f) for mixture and cRFecho(n, f) for far-end sig-
nals, respectively. Eq.(6) demonstrates the computation of apply-
ing the estimated cRFmix(n, f) on time-frequency shifted version
of mixture signals D(n, f) to produce far-end echo suppressed mix-
ture signals Daec(n, f).

Daec(n, f) =
∑

τ1∈[−K,K],τ2∈[−L,L]

cRFmix(n, f, τ1, τ2) ∗D(n+τ1, f+τ2) (6)

Yaec(n, f) = [Daec(n, f), Xaec(n, f)]T (7)

Similar computations are carried on far-end speech X(n, f) to pro-
duce time-aligned signal Xaec(n, f). Later, the processed signals
Daec(n, f), and Xaec(n, f) are channel-wise concatenated to pro-
duce multi-channel AEC output, Yaec(n, f), see Eq.(7)

3.2.2. Stage-II: Beamforming
In the second stage, we use our proposed joint spatio-temporal
RNN AEC beamformer (JRNN-AEC-BF) to spatially filter co-
existing far-end residuals and background-noise. This is adaptation
to our previous work generalized spatio-temporal RNN beamformer
(GRNN-BF) [26] which predicts frame-wise beamforming weights
wGRNN-BF(n, f)∈CM from frame-level target speech and noise co-
variance matrices estimated using complex spectrograms of only
mixture signals. In the current work, proposed JRNN-AEC-BF uses
mixture, far-end and the AEC processed signals to learn a better
beamforming solution wJRNN-AEC-BF(n, f)∈C2×(M+1) from target
speech and noise covariance matrices ΦS̃S̃(n, f) & ΦÑÑ(n, f)



estimated using channel-wise stacked mixture, far-end, and AEC
processed complex spectrograms, Ỹ(n, f).

Similar to the precious stage, we extract joint spatial covariance
matrix of the stacked inputs Φỹ(n, f) ∈ C2(M+1)×2(M+1) to serve
as features for the JRNN-AEC-BF, see Eq.(9). We discard the upper
half and use one-dimensional convolution layers to project the fea-
tures to lower dimension to reduces computational cost and memory
usage. These low-dimensional features are then fed to multi-head
self-attention to emphasize relevant features.

Ỹ(n, f) = [Y(n, f), Yaec(n, f)]T µ̄ỹ =

2(M+1)∑
i=1

Ỹi(n, f) (8)

Φỹ(n, f) =
((

Ỹ(n, f)− µ̄ỹ
)(

Ỹ(n, f)− µ̄ỹ
)H) (9)

These extracted features are then passed through to one-
dimensional convolution layers to estimate complex ratio filters
[32] cRFS̃(n, f) and cRFÑ(n, f). As shown in Eq.(10), we em-
ploy cRFS̃(n, f) on stacked input spectrogram Ỹ(n, f) to estimate
multi-channel target speech and noise signals, S̃(n, f) and Ñ(n, f).
To this end, we use Eq.(11) to compute frame-wise speech covari-
ance matrix ΦS̃S̃(n, f) from multi-channel speech signals.

S̃(n, f) =
∑

τ1∈[−K,K],τ2∈[−L,L]

cRFS(n, f, τ1, τ2) ∗ Ỹ(n+τ1, f+τ2) (10)

Similar to [26], we use layer normalization with learnable affine
transforms to replace the the conventional mask normalization. Sim-
ilar computations are carried out to estimate multi-channel noise sig-
nals Ñ(n, f) and frame-wise noise covariance matrix ΦÑÑ(n, f).
The real and imaginary parts of frame-wise speech and noise co-
variance matrices are concatenated and fed to a unified RNN-DNN
(FRD) that predicts frame-level beamforming weights as,

ΦS̃S̃(n, f) = LayerNorm
(
S̃(n, f)S̃(n, f)H

)
(11)

wJRNN-AEC-BF(n, f) = FRD
([

ΦS̃S̃(0:n, f),ΦÑÑ(0:n, f)
])

(12)

Finally, we employ the proposed double-talk detection transformer
(DTDT) module, which attends to frames corresponding to near-end
speech using double-talk detection and adjusts the computed weights
to suppress far-end echo and co-existing background noise.

3.3. Double-Talk Detection Transformer (DTDT) module
A transformer network [27] is a collection of stacked sub-layers that
include a multi-head self-attention (MHSA) module, a fully con-
nected feed-forward (FF) network, residual connections, and layer
normalization. As shown in Fig.1, the RNN-DNN is followed by
a double-talk detection transformer (DTDT) module to further im-
prove the spatio-temporal filtering capability of JRNN-AEC-BF. To
avoid confusions, the transformer module in this paper refers to the
RNN modified MHSA network. As shown in Eq. (13), the proposed
DTDT computes global temporal correlation as,

headi = Attention(Qi,Ki, Vi) = softmax(QiK
T
i /
√
dk)Vi

Mid = LayerNorm(V + FF(Concat(head1, . . . , headj)))
MHSA(Q,K, V ) = LayerNorm(Mid + FF(Mid))

DTDT(R) = σ(GRU(R))×MHSA(R,R,R)

WJRNN-AEC-BF-DTDT(n, f) = DTDT
(
WJRNN-AEC-BF(n, f)

)
(13)

where Qi, Ki, Vi are the query/key/value transformations of its in-
put (R) for attention heads indexed by i. ‘dk’ stands for the hidden
layer dimension of ‘Ki’. To better fit for the specific double-talk sce-
nario in the AEC problem, an additional gated recurrent unit (GRU)
network coupled with sigmoid (σ(·)) is trained to predict the frame-
level double-talk detection. These prediction probabilities are then

used to accordingly adjust the beamformer weights to further sup-
press time-frequency regions with consisting far-end speech.

Ŝr(n, f) = (WJRNN-AEC-BF-DTDT(n, f)
)H

Ỹ(n, f) (14)

Finally, the joint AEC and beamformer enhanced speech Ŝr(n, f)
is obtained using the DTDT-attended beamformer weights, original
mixture, far-end, and AEC processed signals.

4. DATASET AND EXPERIMENTAL SETUP
4.1. Dataset
We simulate multi-channel reverberant and noisy dataset using
AISHELL-2 [33] and AEC-Challenge [34] corpus. We generate
a total of 10k multi-channel RIRs with random room character-
istics using image-source method. Each multi-channel RIR is a
set consisting of RIRs from near-end speaker, loud-speaker, and
background noise locations to 8-channel linear microphone array
measuring 26 cm in length. The reverberation time (RT60) ranges
between [0,0.6s] across room configurations. We randomly select
RIRs to simulate multi-channel AEC dataset. We use clean and
nonlinear distorted versions of far-end speech from AEC-Challenge
[34]. The nonlinear distortions include, but are not limited to: (i)
clipping the maximum amplitude, (ii) using a sigmoidal function
[35], and (iii) applying learned distortion functions. In addition, we
include diffused noise with SNRs ranging from [0,40] dB and signal
to echo ratio (SER) from [-10,10] dB. For ‘Train’, ‘Dev’, and ‘Test’
of the dataset, a total of 90K utterances, 7.5K utterances, and 2K
utterances are generated.

4.2. Experimental Setup
A 512-point STFT is employed with 32 ms Hann window and 16 ms
step size to extract complex spectra for mixture and far-end signals.
All systems in the study are trained on 4-second chunks with the
Adam optimizer and a batch size of 12 to maximize the time-domain
scale-invariant source-to-noise ratio (Si-SNR) [36] and minimize
the frequency-domain mean square error (MSE), both of which are
equally weighted. Initial learning rate is set to 1e-4 with a gradient
norm clipped with max norm 10. All systems are designed to have
∼8.5M parameters and trained over 30 epochs. The estimated cRFs
size in the proposed systems is empirically set to (3x1). In this
study, we compare our proposed method to four baseline systems
which include: (i) SpeexDSP [14], a purely signal-processing based
AEC, (ii) FT-LSTM [28], a purely NN-based single-channel AEC
adapted for multi-channel, (iii) GRNN-BF [26], a robust NN-based
beamformer, (iv) hybrid models that combine AEC and traditional
and NN-based beamformers.

4.3. Evaluation Metrics
The proposed system’s performance is compared to other systems
on the ‘Test’ set using perceptual quality metrics such as PESQ
and STOI, as well as objective metrics such as Si-SNR, signal-to-
distortion ratio (SDR), and echo return loss enhancement (ERLE).
Furthermore, a general-purpose mandarin speech recognition Ten-
cent API [37] is used to test the ASR performance by computing
word error rate (WER). As mentioned earlier, the current work only
focuses on echo cancellation and denoising without dereverberation.
Hence, the reverberant clean signal (near-end speech at the center
of the array) is used as the reference signal for both training and
evaluating the performance. To validate the improvement in speech
intelligibility, PESQ and STOI metrics are computed only during
double-talk periods. Similarly, ERLE is computed during periods
where only far-end speech is active, providing an accurate measure
of echo suppression.



Table 1: Experimental results for different joint AEC and spatial filtering networks across objective evaluation metrics.

Systems/Metrics PESQ (↑) STOI (↑) SiSNR (↑) SDR (↑) ERLE (↑) WER% (↓)
Reverberant clean reference 4.500 1.000 ∞ ∞ ∞ 2.190
Mixture (No Processing) 1.708 0.593 -4.275 -3.806 0.00 77.120
SpeexDSP [14] 1.935 0.637 -1.519 -0.590 3.652 44.994
FT-LSTM [28] 2.997 0.839 10.535 11.568 33.055 15.859
GRNN-BF [26] 2.765 0.798 9.530 10.589 34.940 23.805
JRNN-BF 2.872 0.822 10.268 11.233 34.395 17.393
SpeexDSP + JRNN-AEC-BF 2.811 0.810 7.212 10.849 34.100 20.465
FT-LSTM + MVDR 2.853 0.826 7.688 9.791 34.869 13.525
FT-LSTM + JRNN-AEC-BF 3.046 0.847 11.081 11.999 37.420 14.028
Proposed JRNN-AEC-BF-DTDT 3.117 0.858 11.280 12.178 36.620 11.392

Fig. 2: Sample spectrograms of enhanced speech signals from evaluated systems

5. RESULTS AND DISCUSSIONS
We compare the performance of proposed system to other systems
using quality scores, and word error rates on the ‘Test’ set in Table.1.
[“GRNN-BF vs. JRNN-BF” Beamformer]: We feed far-end sig-
nals to GRNN-BF in addition to the mixture signals in order to learn
a beamforming solution for the mixture signals only. JRNN-BF is
an adaptation GRNN-BF for AEC task, which learns beamforming
weights for mixture and far-end signals. As a result, we see that the
proposed JRNN-BF improves the performance of GRNN-BF. For
example, an average PESQ of 2.76 vs. 2.87; WER: 23.80 vs. 17.93.
Likewise, we also see 3%, 8%, and 6% relative improvements in
STOI, Si-SNR, and SDR respectively. These findings suggest that
estimating beamformer weights for far-end signal alongside mixture
allows the network to learn a better beamforming solution.Therefore,
further experiments in the study subsequently use JRNN-BF and its
adaptations JRNN-AEC-BF for joint AEC and beamforming.
[“Hyrbid vs. NN-based” Joint AEC beamformer]: For AEC
tasks, we extend JRNN-BF to JRNN-AEC-BF, which employs
on multi-channel AEC processed signals in addition to the origi-
nal mixture and far-end signals. To design a hybrid joint AEC and
beamformer system, we combine our proposed JRNN-AEC-BF with
SpeexDSP [14], a widely used signal processing-based algorithm for
AEC. Similarly, we create a second hybrid model by combining an
adapted FT-LSTM for multi-channel applications with a traditional
minimum variance distortionless response (MVDR) beamformer
[38]. Finally, we compare them with a NN-based joint AEC and
beamformer designed by combining FT-LSTM with the proposed
JRNN-AEC-BF.

Table-1 shows that, while SpeexDSP has a marginal impact on
overall speech quality, it has a greater impact on the performance
of speech recognition systems, i.e., for an average PESQ improve-
ment from 1.70 to 1.93, a corresponding improvement in WER from
77.12 to 44.99. Nonetheless, the performance of hybrid system out-
performs SpeexDSP. The performance gains were not superior to our
proposed JRNN-AEC-BF beamformer. We suspect that because of
the severe non-linear distortions in the training We suspect that the
linear adaptive filters in SpeexDSP do not converge due to the se-
vere non-linear distortions in the training samples. This increases the
range of uncertainty in nonlinear distortions, subsequently lowering
the learning ability of JRNN-AEC-BF. The performance degrada-
tion can also be observed in in Fig.2. Likewise, while multi-channel
adapted FT-LSTM performs well on its own, it does not perform
well when combined with traditional MVDR on speech quality met-

rics. A probable reason for this is that traditional MVDR prioritizes
a distortionless response over suppression to preserve the near-end
speech. This can be observed from the improvements achieved in
WER: 13.25 vs 20.46 and SiSNR:7.68 vs 10.53 over the hybrid sys-
tem. However, the adapted FT-LSTM when combined with our pro-
posed JRNN-AEC-BF outperforms both hybrid models. For exam-
ple, an average PESQ of 3.05 vs. {2.81,2.85}; SiSNR: 11.08 vs.
{7.21,7.68}’ and ERLE: 37.42 vs {34.1,34.87} over hybrid models
with the exception on WER which is still in a comparable range. The
findings suggest that out proposed JRNN-AEC-BF optimizes well
with NN-based AEC systems by including AEC processed signals
within alongside mixture and far-end signals.
[“Proposed JRNN-AEC-BF-DTDT vs FT-LSTM + JRNN-AEC-
BF”]: Our proposed joint AEC and beamforming system differs
from the “FT-LSTM + JRNN-AEC-BF” in the following ways: (i)
we replace conventional LPS and IPD input features with spatial co-
variance matrix from Eq.(4) & (9), (ii) we use proposed DTDT mod-
ule to adjust the estimated beamformer weights to further suppress
the far-end via double-talk detection. The proposed system achieves
better performance than “FT-LSTM + JRNN-AEC-BF” in terms of
quality and speech recognition i.e., PESQ: 3.12 vs 3.04, WER: 11.39
vs 14.03. Likewise, we see {1.7,1.4}% relative improvements in
SiSNR and SNR respectively. Fig. 2 also shows that the proposed
system can enhance the spectrogram with less residual echo com-
pared to other systems (highlighted with arrows). Although“FT-
LSTM+JRNN-AEC-BF" achieves a bit higher ERLE than the pro-
posed, 37.42 vs 36.62, we can conclude that the major contribution
to this improvement comes from our proposed JRNN-AEC-BF when
compared to "FT-LSTM," 37.42 vs 33.05.

6. CONCLUSION
To conclude, we present an all-deep learning strategy for joint AEC
and beamforming with the following major contributions. First,
we propose using spatial covariance matrices with multi-head self-
attention to learn significant AEC features. Second, we propose
JRNN-AEC-BF, a modification of our previous work GRNN-BF,
which performs beamforming with mixture, far-end, and AEC pro-
cessed signals. Finally, we propose DTDT module that predicts
double-talk using RNN and adjusts attention weights to compensate
for double-talk scenarios. Among systems evaluated, the proposed
system achieves the highest objective scores and the lowest WER.
Although the proposed system performs well in terms of recogni-
tion and echo suppression, we believe addressing dereverberation
alongside AEC and beamforming can further improve performance.
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